On Universality of Critical Behavior in the Focusing Nonlinear Schrödinger Equation, Elliptic Umbilic Catastrophe and the Tritronquée Solution to the Painlevé-I Equation

نویسندگان

  • Boris Dubrovin
  • Tamara Grava
  • Christian Klein
چکیده

We argue that the critical behavior near the point of “gradient catastrophe” of the solution to the Cauchy problem for the focusing nonlinear Schrödinger equation i Ψt + 2 2 Ψxx + |Ψ |2Ψ = 0, 1, with analytic initial data of the form Ψ (x,0; ) = A(x)e i S(x) is approximately described by a particular solution to the Painlevé-I equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On universality of critical behaviour in the focusing nonlinear

We argue that the critical behaviour near the point of " gradient catastrophe " of the solution to the Cauchy problem for the focusing nonlinear Schrödinger equation ii Ψ t + 2 2 Ψ xx + |Ψ| 2 Ψ = 0, 1, with analytic initial data of the form Ψ(x, 0;) = A(x) e i S(x) is approximately described by a particular solution to the Painlevé-I equation .

متن کامل

On universality of critical behaviour in the focusing

We argue that the critical behaviour near the point of " gradient catastrophe " of the solution to the Cauchy problem for the focusing nonlinear Schrödinger equation ii ψ t + 2 2 ψ xx + |ψ| 2 ψ = 0 with analytic initial data of the form ψ(x, 0;) = A(x) e i S(x) is approximately described by a particular solution to the Painlevé-I equation.

متن کامل

On Critical Behaviour in Systems of Hamiltonian Partial Differential Equations

We study the critical behaviour of solutions to weakly dispersive Hamiltonian systems considered as perturbations of elliptic and hyperbolic systems of hydrodynamic type with two components. We argue that near the critical point of gradient catastrophe of the dispersionless system, the solutions to a suitable initial value problem for the perturbed equations are approximately described by parti...

متن کامل

Scattering for the focusing Ḣ-critical Hartree equation with radial data

We investigate the focusing Ḣ-critical nonlinear Schrödinger equation (NLS) of Hartree type i∂tu + ∆u = −(| · |−3 ∗ |u|2)u with Ḣ radial data in dimension d = 5. It is proved that if the maximal life-span solution obeys supt ∥|∇| 12 u ∥∥ 2 < √ 6 3 ∥|∇| 12Q ∥∥ 2 , where Q is the positive radial solution to the elliptic equation with nonlocal operator (1.4) which corresponds to a new variational ...

متن کامل

Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity  

Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2009